



## **GMP aspects of cold chain management for pharmaceutical products**

Dr. Hans-Jürgen Krause, Pharmaceutical Development Parenteral Dosage Forms  
Maha Noujeime, International Technical Service

Abbott GmbH & Co. KG, Ludwigshafen, Germany

### **Cold chain management for pharmaceutical products**

#### **Content**

- Introduction
- Process flow analysis
- Practical approach to validation/qualification
  - -80°C storage/ frozen shipment
  - 2-8°C shipment
  - Temperature excursion handling/data requirements
- Training/documentation



### **Cold chain management for pharmaceutical products**

- Biotech products often require deep frozen/refridgerated storage
- Quality of pharmaceutical products is of primary concern
- Chemical and physico-chemical stability depends on temperature
- cGMP regulations enforce the compliance with strict temperature control along the process/distribution chain



### **Cold chain management for pharmaceutical products**

- cGMP regulations require
  - Complete tracking of temperature storage conditions
  - Validated storage areas
  - Qualified shipment
  - Documentation
  - Procedures to handle temperature excursions



## Cold chain management for pharmaceutical products

### Process Flow Diagram 1)

Identify Product

Product stability profile

Transportation process flow consideration

Bulk & Intermediate    Finished goods    Analytical samples

1) According to a draft medicinal cold chain guideline by PDA Cold chain working group, Nov. 03



## Cold chain management for pharmaceutical products

### Process Flow Diagram 1)

Develop requirements documents  
Component specification

Design testing

Develop OQ protocol    Develop PQ protocol

OQ testing                    PQ testing

1) According to a draft medicinal cold chain guideline by PDA Cold chain working group, Nov. 03



## Cold chain management for pharmaceutical products

### Process Flow Diagram <sup>1)</sup>



1) According to a draft medicinal cold chain guideline by PDA Cold chain working group, Nov. 03



## Cold chain management for pharmaceutical products

- Definition of validation  
Validation is documented testing that consistently produces a result meeting pre-determined specifications.
- Definition of qualification  
Qualification is documented testing that demonstrates with a high degree of assurance that a specific process will meet the pre-determined acceptance criteria.



## **Cold chain management for pharmaceutical products**

- Example of a cold chain
  - Drug substance manufacture East coast US
  - Shipment at -80°C to drug product manufacturing site EU
  - Shipment of semi finished product at 2-8°C to distribution center in EU
  - Shipment of semi finished product to packaging site in US at 2-8°C
  - Distribution of final product to customer at 2-8°C



## **Cold chain management for pharmaceutical products**

- Temperature tracking during processing
  - Each manufacturing step at RT is captured
  - Each manufacturing step has an acceptance limit
  - Sum of all manufacturing steps has to be within limit
  - Total processing time at RT is covered by analytical stability data of the product



## **Cold chain management for pharmaceutical products**

- Qualification<sup>1)</sup> of storage equipment (eg freezer)
  - Calibration of sensors (pre/post validation)
  - Temperature distribution (empty/loaded)
  - Critical alarm functions tested
  - Predefined acceptance criteria
  - Written and preapproved protocols

1) Qualification: proving and documenting that equipment or ancillary systems are properly installed, work correctly, and comply with specified requirements



## **Cold chain management for pharmaceutical products**

- Validation of a freezer
  - External sensors calibrated to +/- 2°C
  - Data recording:
    - Every 5 min
    - Continuously over 3 days
    - 15 sensors distributed within (bottom/middle/top) freezer
  - Equilibration period 3 h
  - Acceptance criteria:
    - No single value +/- 20°C of target
    - Mean of data per h: +/- 5°C
  - Recalibration every year
  - Revalidation every 2 years



## Cold chain management for pharmaceutical products

- Shipment qualification –80°C (endurotherm E90)

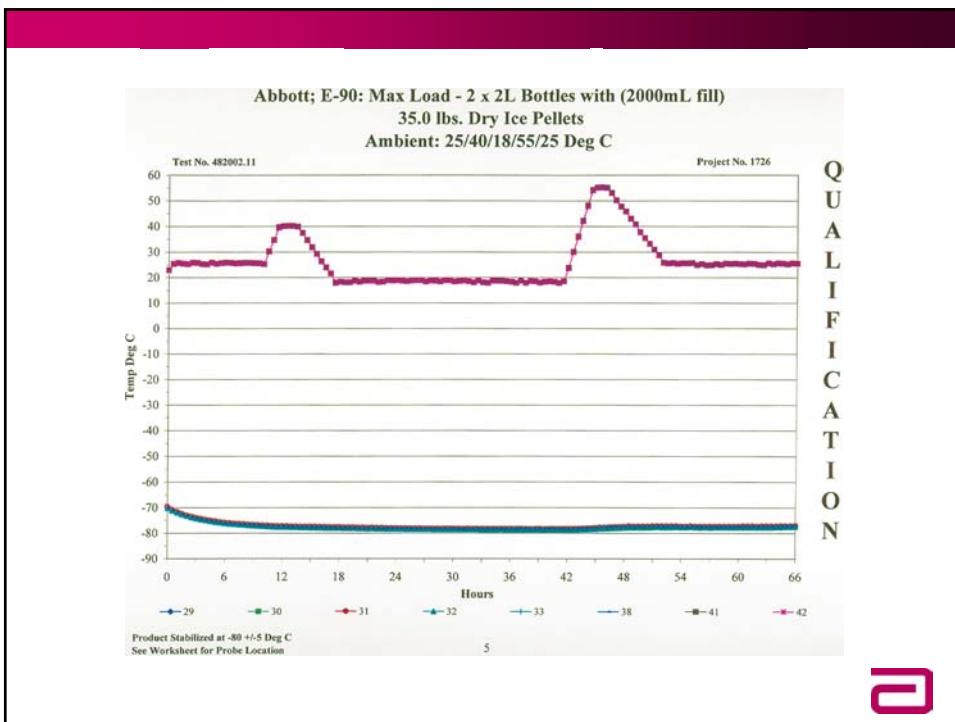


a

## Cold chain management for pharmaceutical products

- Shipment qualification –80°C (endurotherm E90)




a

## Cold chain management for pharmaceutical products

- Shipment qualification endurotherm E 9

- Thermal qualification
  - Product temperature NMT  $-25^{\circ}\text{C}$  for at least 66 h
  - Ambient temperature profile ( $+18^{\circ}\text{C}$  to  $+55^{\circ}\text{C}$ )
  - 2 x 2L of product
  - Approx. 32 lbs dry ice refrigerant
- Transportation qualification
  - Free fall testing (ASTM D 5276)
  - Vibration test (ASTM D 999)
  - Random vibration test (ASTM D 4228)





## Cold chain management for pharmaceutical products

- Shipment qualification EF 6100 <sup>1)</sup>
  - Thermal qualification
    - Product temperature 0 - 10°C for at least 72 h
    - 2 temperature profiles (-15°C to +18 °C and 25°C to 40°C)
    - 25600 units of product
    - Approx. 396 lbs refrigerant (48 oz ice brix, 5°C and -20°C)

1) manufactured by Tuscarora Thermosafe, formerly Insulated Shipping Container

## EF-6100AB Packaging Diagram “Winter Profile”

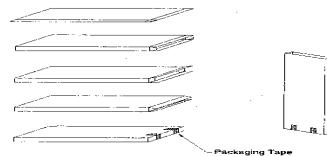



Figure 1: Gel Sleeve Assembly

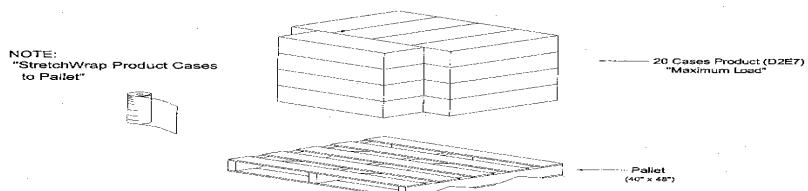



Figure 2: Product/Pallet Assembly



## EF-6100AB Packaging Diagram “Winter Profile”

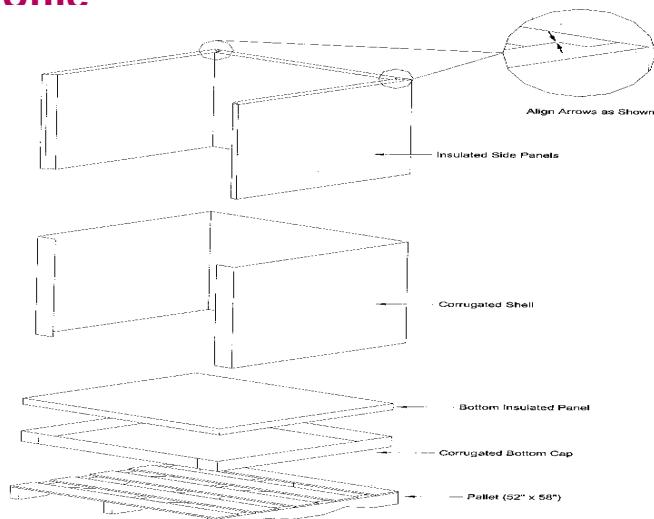



Figure 3: Base, Sides and Panel Assembly



## EF-6100AB Packaging Diagram “Winter Profile”

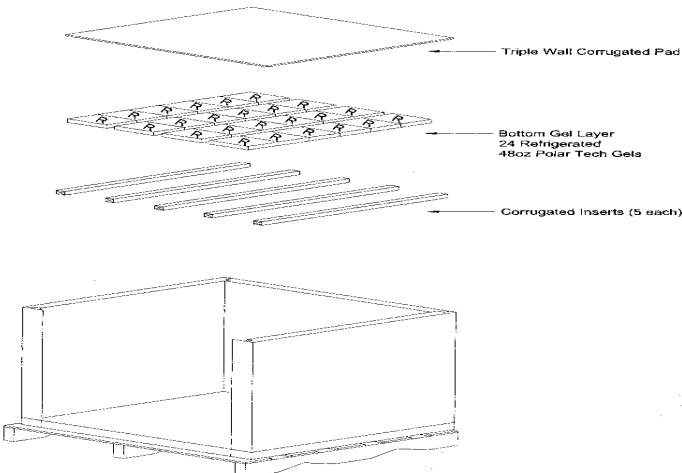



Figure 4: Bottom Gel layer, Spacer, and Pad Assembly



## EF-6100AB Packaging Diagram “Winter Profile”

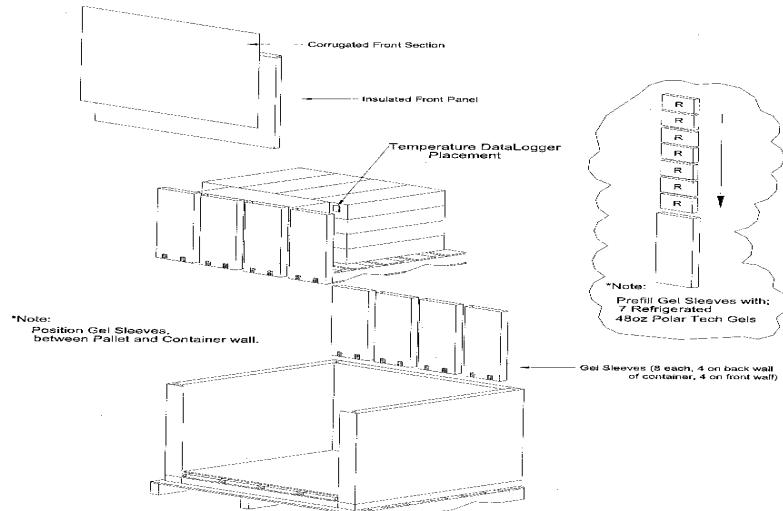



Figure 5: Gel Sleeve, Product Pallet, Front Wall Assembly



## EF-6100AB Packaging Diagram “Winter Profile”

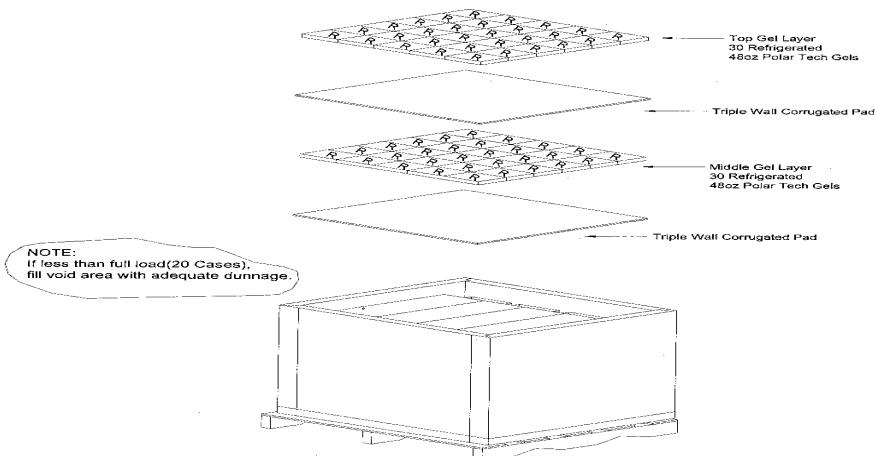



Figure 6: Top Gel Assembly



## EF-6100AB Packaging Diagram “Winter Profile”

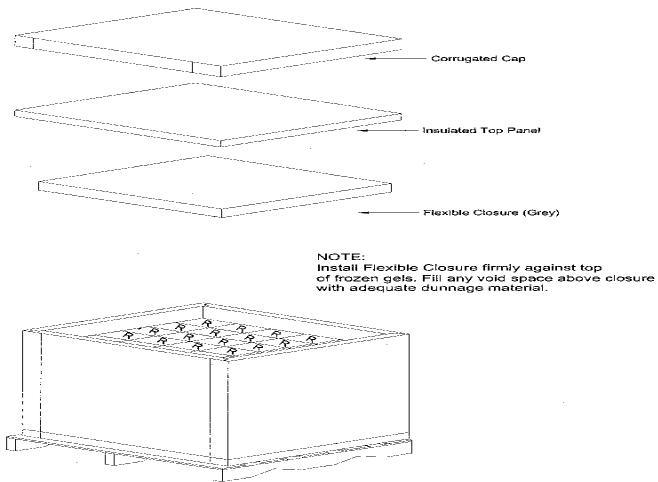
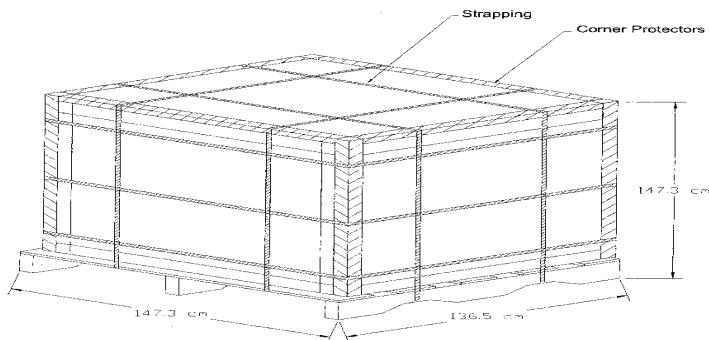


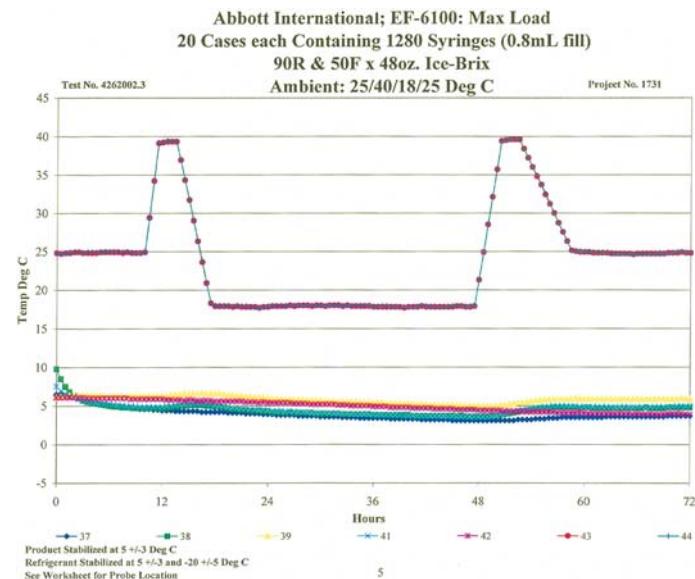

Figure 7: Top Container Assembly



## EF-6100AB Packaging Diagram "Winter Profile"

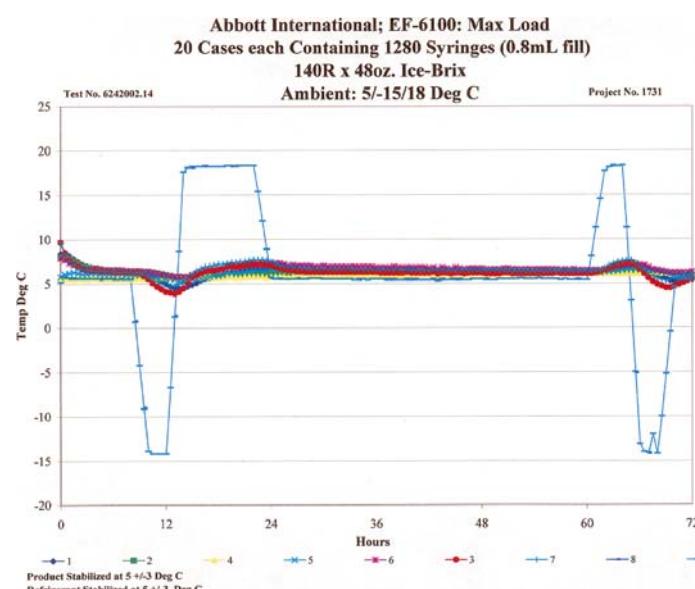
NOTES FOR FINAL ASSEMBLY:  
 1. STRAP CONTAINER THREE (3) TIMES AROUND GIRTH  
 2. STRAP CONTAINER TO PALLET TWO (2) TIMES EACH DIRECTION  
 3. USE FIBERBOARD CORNER PROTECTORS ON ALL STRAPPED CORNERS





Figure 8: Strapping Assembly



| TOP VIEW<br>EF-6100                                                                                                                                                                                                                |                                                                                                                                                                                                                              | TEST W/C KSHEET                                                                                                                                                                    |                                                                                                                                                                  | Notes: Maximum Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <p>Probe # 11/946-5 (Top corner) 6<br/>     Air Probe # 11/946-4 7<br/>     Probe # (middle center) 11/93-L-1<br/>     Air Probe # W/06-3 3<br/>     Ambient: 1A-1 8<br/>     1A-2 9<br/>     Probe # (bottom corner) W/015 10</p> | <p>Corrugated Insert</p> <p>Probe # (middle Face) 11/946-2 11<br/>     Air Probe # 11/946-1 12<br/>     Probe # (bottom Face) W/015 13<br/>     PLUG 5</p>                                                                   | <p>Probe # (middle center) 11/93-L-1<br/>     Air Probe # W/06-3 3<br/>     Ambient: 1A-1 8<br/>     1A-2 9<br/>     Probe # (bottom corner) W/015 10</p>                          | <p>EF-6100 Dimensions:<br/>         I.D.: 50" x 46" x 46"<br/>         O.D.: 57 3/4" x 52 3/4" x 53"<br/>         Wall: 1.5"<br/>         Plug Thickness: 4"</p> | <p>1. Product load: 20 Cases/1280 Syringes (D7ET) per case (0.8ml/6ml). Product shrink wrapped to pallet.<br/>         2. Product staged at 5°C±3°C for 72 hours or until product stabilizes at 5°C.<br/>         3. EF-6100 and other components staged at 22°C±3°C<br/>         4. Other components: 3 triple wall pads, 8 single wall sleeves, 5 double wall spacers, shrink wrap, wood pallet (40" x 48").<br/>         5. 140 Refrigerated x 48oz. Ice-Brix<br/>         6. Refrigerant staged at 5°C±3°C for 72 hours.<br/>         7. Use corner protectors when binding.</p> |  |
| <p>FRONT VIEW<br/>EF-6100</p> <p>Wood Pallet (40" x 48") Spacer<br/>     Shrink wrap</p>                                                                                                                                           | <p>Triple-Wall Pad<br/>     Triple-Wall Pad</p>                                                                                                                                                                              | <p>Triple-Wall Pad<br/>     Triple-Wall Pad</p>                                                                                                                                    | <p>Corrugated Insert (8 total)</p>                                                                                                                               | <p>Test No: 6242012-14<br/>     Start Date/Time: 6/24/02 12:05<br/>     Gel Initial (internal) Temp.: 5.5 °C<br/>     Performed By: SJC<br/>     Verified By: RVC<br/>     Datalogger: PLUG 5<br/>     Log Interval: 30 minutes<br/>     Temp. Criteria: 0.4°C to 9.6°C<br/>     Test Type: Qualification<br/>     Chamber No: 11<br/>     Job No: 1731<br/>     Total Weight: N/A</p>                                                                                                                                                                                               |  |
| <p>TEST<br/>OBSERVATION:</p> <p>Scale: 0.35</p> <p>Key in -14G: 1,2,4-6<br/>     .14G: 3,7-9</p>                                                                                                                                   | <p>ISC Thermal Test Facility<br/>     59 Edsel Hwy, New Haven, CT 06454<br/>     CUSTOMER: Abbott International<br/>     PROTOCOL #: AIMM_051702-001<br/>     DRAWN BY: R. LENHARD<br/>     DRAWING NO. L:\02d\1731-win4</p> | <p>AMBIENT: 50°F/10°C 2 hrs<br/>     CONDITIONS: -15°C/ramp 2 hrs<br/>     -15°C/2 hrs<br/>     10°C/ramp 2 hrs<br/>     10°C/2 hrs<br/>     5°C/ramp 2 hrs<br/>     5°C/2 hrs</p> |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |




Q  
U  
A  
L  
I  
F  
I  
C  
A  
T  
I  
O  
N



a

Q  
U  
A  
L  
I  
F  
I  
C  
A  
T  
I  
O  
N



a

## Cold chain management for pharmaceutical products

### Example of a Temperature Excursion Study <sup>1)</sup>

| Storage condition                      | Testing condition                                |
|----------------------------------------|--------------------------------------------------|
| Controlled room temperature<br>20-25°C | 1) -20°C for 2 days<br>2) 60°C/75% RH for 2 days |
| Refridgerated condition<br>2-8°C       | 1) -20°C for 2 days<br>2) 40°C/75% RH for 2 days |
| Freezer condition<br>-20 to -10°C      | 1) 25°C/60% RH for 2 days                        |

1) According to a draft medicinal cold chain guideline by PDA Cold chain working group, Nov. 03



## Cold chain management for pharmaceutical products

### Example of a Thermal Cycling Study <sup>1)</sup>

| Storage condition                      | Testing condition                                                                        |
|----------------------------------------|------------------------------------------------------------------------------------------|
| Controlled room temperature<br>20-25°C | -20°C for 2 days followed by<br>40°C/75% RH for 2 days<br>Repeat for a total of 3 cycles |
| Refridgerated condition<br>2-8°C       | -20°C for 2 days followed by<br>25°C/60% RH for 2 days<br>Repeat for a total of 3 cycles |
| Freezer condition<br>-20 to -10°C      | -20°C for 2 days followed by<br>5°C for 2 days<br>Repeat for a total of 3 cycles         |

1) According to a draft medicinal cold chain guideline by PDA Cold chain working group, Nov. 03



## Cold chain management for pharmaceutical products

Example for Temperature Excursion Handling of a refrigerated product<sup>1)</sup>

| Temperature Range | Time         |
|-------------------|--------------|
| <-20°C            | Do not use   |
| -20°C to 2°C      | 2 days       |
| 2 to 8°C          | Until Expiry |
| 8 to 25°C         | 6 days       |
| 25 to 40°C        | 2 days       |
| > 40°C            | Do not use   |

1) According to a draft medicinal cold chain guideline by PDA Cold chain working group, Nov. 03



## Cold chain management for pharmaceutical products

- Training/documentation
  - According to written SOP's
  - Training must be documented
  - Specific with regards to
    - Preconditioning of refrigerants to be used
    - Packaging instructions
    - Handling of thermologgers
    - Paper work (preshipment notification, contact persons, deviation handling)
  - Temperature data for each shipment have to be evaluated against defined criteria



## Acknowledgement

Kevin O'Donnell

Dr. M. Dickes

Joshua Froimson

ISC



End of Presentation

